「変更(管種変更)|④:

スラスト対策工設計システムVer3.0.1.29改訂版

1党8月1回

1100

800

名称

種類

枩更

D1 D1

適用管種については、「使用管種」の画面で登録していますが、同じ管種名称の範囲内で 「種類/形式/規格名」および「呼び径」の変更が可能です。

断面名 断面

下流側 変更 種類

2 登録管の選択

JIS G 5526 JIS G 5526

JIS G 552

JIS G 5526

JIS G 5526

すべて表示 削除

抽出条件

會總管

規格管

規格管

規信 目 規格管

規格管

規格管

上流側

(水平屋曲部

C T芋管

検討断面入ナ

片落ち部。

L流側 名称 ダクタイル铸鉄管 変更 種類 D1 形 K 呼び径 1100

形

登録別 規格管 → 名称 ダクタイル講談管

ダクタイル铸鉄管 ダクタイル铸鉄管

イル铸鉄

ダクタイル請決管

ダクタイル鋳鉄管

ダクタイル講鉄管

種類 D1 ▼ 形 K

給直屈曲部 (6 分岐部

C 井村25

ダクタイル
鋳鉄管 K 呼び径

特に、「片落ち部」「分岐部」「丁字 (1252)570481-管|について枝管部の「呼び径」 を変更する場合は変更したい枝管 (下流側/分岐管)の「変更」ボタ ンをクリックして「呼び径」等の 変更を行います。

右画面は「分岐部」の場合を表示 していますが、その他の場合も同 様です。

「登録管の選択」画面では、管種 選択後「適用」ボタンで確定変更 します。

「断面データ入力」 ⑤:

検討断面毎に詳細データを入力する項目です。 檢討名称(水平屈曲部/鉛直屈曲部/分岐部/T字管 片落ち管/弁栓部)毎に入力画面が切り替わりま す。

形状寸法入力については、「説明図」ボタンをク リックして、イメージ図を表示したまま形状寸法 の入力を行う事も可能です。

管の曲がり角度(θ)、管上下流方向の角度(β u、Bd)については、右下イメージ図を参考にし て下さい。

地下水位は、地表面からの立下りの距離(m)

上流側継手までの距離	L1	(m)	1.000
下流側継手までの距離	L2	(m)	1.000
曲がり中心半径	R	(m)	1.000
水平曲がり角度	θh	(*)	45.00
管上流側と水平のなす角	βu	(*)	
管下流側と水平のなす角	βd	(*)	
地表面から屈曲点までの深さ	Hc	(m)	1.7080
地下水位 (G.L)	Hw	(m)	1.000
管内平均流速	V	(m/sec)	0.000
管底面の地盤の許容支持力度	σrv	(kN/m2)	300.00
設計水圧	Н	MPa	1.000
再計算 管の重量 4.29	(kN) 管	防水重 🗌	15.00 (KN)
設計水圧が作用する断面積	〇分	径(内径⑦

を正値で入力しますが、地下水位を考慮しない場合は、入力数値として「99..9」以上の数値を入力する と、計算書には「地下水位の項目が「-----」として表示されます。

設計水圧は、「荷重条件」入力画面で指定した値が表示されますが、変更する場合は上書き入力 (Mpa) します。

「重量計算」 ⑥:

「管の重量」および「管内水重」については 「再計算」ボタンをクリックすると計算表示し ます。また、呼び径や管種の変更を行った場合 も必ず「再計算」ボタンを実行して下さい。

但し、継手メーカー等により重量データがある 場合(自動計算と異なる場合)は、手入力により 重量を変更して下さい。

手入力した重量を再度自動計算で算出する場合は 「再計算」ボタンをクリックします。

尚、T字管の場合は、確定寸法として自動計算のみとしています。

スラスト対策工設計システムの管情報入力(角度)概要

- | - | × |

検討断面一覧表

検討結果詳細

上へ 下へ 挿入 削除 全削除

呼び径 スラスト 1100 屈曲部

1100

1100

190

呼び径

キャンセル

水輸送用塗覆装鋼管

フマロ 下字管

片花方部

- 0 ×

通用

1000

新規断面 断面コピー

No 断面名 名 1 新規断面1 ダクタイル铸鉄管

4 新規断面4 ダクタイル铸鉄管
 5 新規断面5 ダクタイル铸鉄管

*

630.8 6081

1246 1207

形

909 1008

110

1100 18 1144

600

1100 18 1144

1000 165

1200 195

ST₩

4.2 対策工の指定

対策工の指定画面です。検討断面毎に表示内容は異なります。 対策工は、「一体化長の計算」および「スラストブロック」の検討が 可能です。また、一旦設定した対策工に対して、対策工を無効とする 「対策工なし」のボタンも配置されています。

<対策工の指定範囲>

- ①一体化長の計算(溶接・接着・溶着等による接合) ダクタイル鋳鉄管、鋼管、硬質ポリ塩化ビニル管、ポリエ チレン管など。(地下水位が有る場合は、土の水中重量が 考慮されます。)
- ②一体化長の計算(離脱防止継手による場合) 不とう性管、ダクタイル鋳鉄菅等、硬質ポリ塩化ビニル管、 鋼管、強化プラスチック複合管等。(地下水位が有る場合 は、土の水中重量が考慮されます。)
- ③定形スラストブロックによる検討
 - 曲管部=4タイプ、 分岐部=2タイプ、片落部=1タイプ (T字管、弁栓部は適用無し)
- ④任意形スラストブロックによる検討

屈曲部および分岐部については、任意座標による形状設定が可能。

4.3一体化長の計算(溶接・接着・溶着等による接合)

「溶接・接着・溶接等による接合」による一体化長の計算を行う場合は、本項目をクリックします。

右フレームに入力項目が表示されますの で設計項目の指定及び設計データの入力 を行います。

指定された断面や管材により表示項目 が異なります。

右上図は、「硬質ポリ塩化ビニル管」の 場合です。入力項目としては、

- ·「安全率」·「横方向地盤反力係数」
- ・「温度変化」・「ソケット長」
- ・「接着強度」の入力を行うと
- 「計算結果一覧表」が表示されます。

対策工なし		150	
一体化長の検討	14to-14495-1/532	2000.00 (LN/~ 2)	1 930 0 000 0 000 9 999
接・报看・溶着等による报合 -		3000.00 (Krk/m3/	
離脱防止継手による接合	温度变化 T	5.0 (°C)	
スラストブロックの設計	ンケット長 Ls	0.300 (m)	
	接着強度 αb	2.50 (N/mm2	0
	曲げに対する直管部の有効長さ	L1 (m)	3.868
	軸力に対する直管部の有効長さ	L2 (m)	7.117
	釣り合い長さ	L3 (m)	
	所要埋設長 max(L1, L2) + L3	Lreq (m)) 7.117
	静力	P2 (kN	0 95.99
	接着力	Pz (kN	0 249.76

① 「□釣合い長さを加算する」の考慮の有無について

パイプラインp427の「b.連続埋設長の取り方」の項目で「ただし、鋼管及び硬質ポリ塩化ビニル 管については、一般的に釣り合い長さを加える必要は無い。」との記載があります。 よって、釣り合い長さを考慮する必要が無い場合は、チェックマークを外します。

その他の管材の場合は、「□釣合い 長さを加算する」の項目が、グレー 表示となり、釣合い長を考慮するこ とになります。

対策工なし 	安全率 S I 横方向地盤反力係数 k 300 温度変化 T 55 ソケット長 Ls 02 报務強度 cab 2	50 0.00 (k) 0.0 (*C 300 (m) 50 (N	V/m3) ;)) /mm2)	お合い長さを加重する。
	曲げに対する直管部の有効長さ	L1	(m)	2617
	戦りにより9回世間の1月20日で 約0合い長さ	L2 L3	(m) (m)	0.498
	所要埋設長 max(L1, L2) + L3	Lreq	(m)	6.669
	軸 力	P2	(kN)	83.22
	报 着 力	Pz	(kN)	249.76
任意形スラストブロック				

4.4 一体化長の計算(離脱防止継手による接合)

「離脱防止継手による接合」による一体化長の計算を行う場合は、本項目をクリックします。

右フレームに入力項目が表示されます ので、設計項目の指定及び設計データ の入力を行います。 指定された断面や管材により表示項目

が異なります。

 「水平屈曲・鉛直屈曲」を指定した 場合の入力項目の概要は以下の通り です。

□鉛直屈曲の場合および土被りが 少ない場合にチェック。

対策工なし	「 鉛直屈曲の場合 (チェック無:基準	もよび土被りた MFパイプライン	心ない場 JP.432(a)	合にチェッ の式を採	り。(周面摩挡 用。/チェック	約のみ受働土 有:同書P.434	:圧を無視) (b)の式を採用。)
118 184 /84 W Co U Co U	□ 一体化長さ算出	寺のスラスト力	Pで水流の	運動エネ	ルギーを考慮	。(基準書P43	3①では考慮していない)
離脱防止推手による接合	安全率	S	1.50	-			
	単管1本の長さ(上)	t側) Lpu	4.00	(m)	☑ 上流側	に下流側で異	なる単管長を入力する。
	単管1本の長さ(下)	[例 Lpd	2.00	(m)			1
		1					
	片側一体化長(上流	@D	L	(m)	2.340	1	
	離脱防止金具上流	側個数		(1)	1		
	片側一体化長(下流	.佳D	L	(m)	2.850	-	l.
	離脱防止金具下流	側個数		(個)	2		
任意形スラストブロック							

:これは、鉛直屈曲において土被り

の影響を無視(受働土圧を考慮したくない場合)する場合にチェックマークします。 チェックマークすると「受働土圧抵抗を考慮しない」で「周面摩擦力」のみで計算を行います。 ※補足:基準書では、垂直屈曲管は、受働土圧抵抗を考慮しない計算手法としています。

□一体化長さ算出時のスラスト力で運動エネルギーを考慮。

:これは、スラストカの基本式(パイプラインP415の式9.8.2)では、水流による運動エネルギー が考慮された式となっていますが、以後のスラストカの計算式には考慮されていません。 よって、水流の運動エネルギーを考慮したい場合は、チェックマークします。 ※補足:パイプライン基準書p415では「ただし、通常の場合無視してよい。」と記載しています。

□上流側と下流側で異なる単管長を入力する。

- :単管長が上流側と下流側で異なる場合の指定が可能です。 本項目にチェックマークすると「下流側の単管長」入力が可能となり「計算結果一覧表」に上流 側、下流側の一体化長および金具の個数がそれぞれ表示されます。
- ②「T字管」を指定した場合の入力項目の概要
 - □ 本管側の抵抗を考慮する 「考慮しない」の指定を行います。

①T字管で「□本管側の抵抗を考慮する」にチックマークしない場合(=考慮しない)

:この場合は、パイプラインが採用している「水道施設設計指針」による T 字管の分岐管側の 一体化長(L)の計算を行います。

	対策工詳細		
対策工なし 一体化長の検討 溶接・接着・溶着等による接合 離脱防止維手による接合	「本管側の抵抗を考慮する 安全率 S0 単管1本の長さ Lp 枝管の可能一体化長 Lp2 枝管側一体化長 離脱防止金具 離脱防止金具 片側個数	150 260 (m) 0.000 (m) L (m) 2671 (fB) 2	H•ae
《 戻る			ED 201

(補足:基準書「パイプライン」p435 では、水道施設設計指針(上記①)による手法を記載 している。