埋設管路の耐震設計システム

<u>Ver1.2</u>

適用基準

○ 土地改良事業計画設計基準:設計「パイプライン」(H21/3))
 ○ 下水道施設の耐震対策指針と解説−2006 年版−(H26/8)
 ○ 水道施設耐震工法指針・解説(2009 年版)

出力例

適用基準:下水道施設の耐震対策指針と解説 管材:硬質ポリ塩化ビニル管φ200 (VU)

○入力データ印刷○詳細計算印刷○計算結果一覧表

<u>開発・販売元</u> (株)SIP システム お問合せ先 : 大阪事務所(技術サービス) 〒542-0081 大阪府大阪市中央区南船場 1-18-24-501 TEL : 06-6125-2232 FAX : 06-6125-2233 <u>http://www.sipc.co.jp</u> <u>mail@sipc.co.jp</u>

SIP(株)SIPシステム

目 次

1	表題		
2	設計条例	牛	
	2.1	適用基準	準と重要度2
	2.2	表層地離	2の特性値2
	2.3	水平震剧	度2
3	使用管利	重	
4	検討項目	目の選択.	
	4.1	地震時.	
5	管路の詞	者値	
	5.1	マンホー	ールと管きょの接合部、管きょと管きょの接合部共通4
	5.2	マンホー	-ルと管きょの接合部4
	5.3	管きょる	と管きょの接合部4
	5.4	管きょの	D管軸方向の応力度4
	5.5	地盤の消	坂状化に伴う浮上がりの検討4
	5.6	常時荷重	重による継手の伸縮量5
		5.6.1	内圧による継手の伸縮量5
		5.6.2	自動車荷重による継手の伸縮量5
		5.6.3	温度変化による継手の伸縮量5
		5.6.4	不同沈下による継手の伸縮量5

1 表題

新規データ1

2 設計条件

2.1 適用基準と重要度

適用基準 下水道施設の設耐対策指針と解説 2006年版

重要度区分 重要な幹線等

設計範囲 常時の検討 しない
 レベル1地震動の検討 する
 レベル2地震動の検討 する

2.2 表層地盤の特性値

	層 厚	土 質	γ	γ'	С	φ	NÆ	F _c	D ₅₀
	(m)		(kN/m^3)	(kN/m^3)	(kN/m^2)	(度)	N1 <u>E</u>	(%)	(mm)
1	0.500	砂質土	18.00	8.00	0.0	20.0	2.0	20.0	40.000
2	2.800	砂質土	17.00	7.00	0.0	24.0	5.0	20.0	40.000
3	1.900	粘性土	16.00	6.00	18.0	0.0	3.0		
4	3.300	砂質土	17.00	7.00	0.0	27.0	10.0	30.0	50.000
5	12.200	粘性土	16.00	6.00	12.0	0.0	2.0		
6	4.000	砂質土	17.00	7.00	0.0	28.0	12.0	35.0	45.000
Σ	24. 700								

地下水位 G.L.-3.800 (m)

表層地盤のせん断弾性波速度	$V_{\scriptscriptstyle DS}$	140.01	(m/s)
基盤のせん断弾性波速度	$V_{\scriptscriptstyle BS}$	300.00	(m/s)

2.3 水平震度

位置 京都府 全域 地域別補正係数 C₂ 1.00

地盤面における設計水平震度設計水平震度

レベル1地震動 $k_{hg} = 0.15 C_z$ レベル2地震動 $k_{hg} = 0.60 C_z$

3 使用管種

硬質ポリ塩化ビニル管φ200(VU)			
管厚 7.0	(mm)		
外径 216.0	(mm),内径 202.0 (mm)		
管体の単重	14.0 (kN/m^3)		
モルタルの単重	21.0 (kN/m^3)		
管体のヤング係数	3.0×10^6 (kN/m ²)		
管体のポアソン比	0. 380		
管きょの継手構造	一体構造管きょ 可とう継手あり		
管きょの有効長	4.000 (m)		
管きょの土被り	1.200 (m)		

4 検討項目の選択

4.1 地震時

	出任	検討	項目	許須	≩値
	- 甲位	レベルレ1	レベル2	レベル1	レベル2
地盤の液状化の判定		0	0		
マンホールと管きょの接合部					
地震動による屈曲角	(度)	\bigcirc	\bigcirc	2.0	5.0
地震動による抜出量	(mm)	U	0	27.0	54.0
地盤の液状化に伴う永久ひずみによる抜出し量	(mm)		0		54.0
地盤の傾斜に伴う永久ひずみによる抜出し量	(mm)		0		54.0
地盤の硬軟急変化部通過の影響による抜出し量	(mm)		0		54.0
管きょと管きょの接合部					
地震動による屈曲角	(度)	\cap	\bigcirc	2.0	5.0
地震動による抜出量	(mm)	U	0	27.0	54.0
地盤の液状化に伴う永久ひずみによる抜出し量	(mm)		0		54.0
地盤の液状化に伴う地盤の沈下による屈曲角	(度)		\bigcirc		5.0
地盤の液状化に伴う地盤の沈下による抜出し量	(mm)		0		54.0
地盤の傾斜に伴う永久ひずみによる抜出し量	(mm)	0		27.0	
地盤の硬軟急変化部通過の影響による抜出し量	(mm)	0		27.0	
浅層不整形地盤の影響による抜出し量	(mm)	0		27.0	
管きょの管軸方向のひずみ	(%)	0		0.11	
管きょの管軸方向の応力度	(N/mm^2)	0	0	10.8	47.0
地盤の液状化に伴う浮上がりの検討					

5 管路の諸値

5.1 マンホールと管きょの接合部, 管きょと管きょの接合部共通

マンホール底面の深度 2.900 (m)

地盤の傾斜に伴う永久ひずみ レベル1地震時 ----- , レベル2地震時 -----

地盤の硬軟急変化部通過の影響による永久ひずみ レベル1地震時 0.50 , レベル2地震時 -----

5.2 マンホールと管きょの接合部

管きょの位置 内陸部の液状化地盤 (護岸より100m以上) 地盤の液状化に伴う永久ひずみ レベル1地震時 1.20 , レベル2地震時 1.20

5.3 管きょと管きょの接合部

管きょの位置 内陸部の液状化地盤 (護岸より100m以上) 地盤の液状化に伴う永久ひずみ レベル1地震時 1.20 , レベル2地震時 1.20

マンホールスパン 20.000 (m) マンホールスパンの管きょ本数 5 (本)

5.4 管きょの管軸方向の応力度

重畳係数		3.12	
管路の可とう継手間の長さ		4.000	(m)
管きょと地盤の摩擦力		10.00	
管体の降伏ひずみ		1.500	(%)
地盤の剛性係数に対する係数	C1	1.50	
	C2	3.00	

5.5 地盤の液状化に伴う浮上がりの検討

管周辺の土砂の飽和体積重量 ----- (kN/m³)

5.6 常時荷重による継手の伸縮量

5.6.1 内圧による継手の伸縮量

内 圧 ----- (kN/m²)

5.6.2 自動車荷重による継手の伸縮量

自動車荷重:	
鉛直方向地盤反力係数	 (kN/m^3)

5.6.3 温度変化による継手の伸縮量

線膨張係数	
温度変化	(°C)

5.6.4 不同沈下による継手の伸縮量

軟弱地盤区間	 (m)
軟弱地盤区間中央における沈下量	 (m)

目 次

1	設計条件3
	1.1 準拠指針
	1.2 使用管種
	1.3 管きょの諸値3
	1.4 地盤条件
2	設計水平震度
-	2.1 計算式
	2.2 耐震設計上の地盤種別
	2.3 地域区分
	2.4 設計水平震度
0	地震動の見十亦位拒極
3	地長期の取入変位派幅0
4	地盤振動の波長
5	地盤の液状化の判定
	5.1 計算式
	5.2 全上載圧
	5.3 有効上載圧9
	5.4 タイプ I 地震動10
	5.4.1 繰り返し三軸強度比10
	5.4.2 地震時せん断応力比10
	5.4.3 液状化に対する低効率10
	5.5 タイプⅡ地震動11
	5.5.1 繰り返し三軸強度比11
	5.5.2 地震時せん断応力比11
	5.5.3 液状化に対する低効率11
6	マンホールと管きょの接続部の検討12
	6.1 地震動による屈曲角および抜出し量12
	6.1.1 計算式12
	6.1.2 レベル1地震動12
	6.1.3 レベル2地震動13
	6.2 地盤の液状化に伴う永久ひずみによる抜出し量14
	6.3 地盤の傾斜に伴う永久ひずみによる抜出し量14
	6.4 地盤の硬軟急変化部通過の影響による抜出し量15
7	管きょ継手部の検討16
	7.1 地震動による屈曲角および抜き出し量16
	7.1.1 計算式16
	7.1.2 レベル1地震動16
	7.2 地盤の液状化に伴う永久ひずみによる抜出し量17
	7.3 液状化に伴う地盤の沈下による屈曲角と抜出し量17
	7.3.1 計算式17
	7.3.2 レベル2地震動18
	7.4 地盤の傾斜に伴う永久ひずみによる抜出し量18

	7.5	地盤の	更軟急変化部通過の影響による抜出し量	19
	7.6	浅層不整	整形地盤の影響による抜出し量	19
		7.6.1	計算式	19
		7.6.2	レベル2地震動	20
8	管きょの	の管軸方「	向の検討	21
	8.1	管きょの	D軸方向ひずみ	21
		8.1.1	計算式	21
		8.1.2	レベル1地震動	23
	8.2	管きょの	D軸方向応力度	24
		8.2.1	計算式	24
		8.2.2	地盤変位の伝達係数	25
		8.2.3	管きょの応力補正係数	26
		8.2.4	レベル1地震動	29
		8.2.5	レベル2地震動	29

1 設計条件

1.1 準拠指針

下水道施設の設耐対策指針と解説 — 2006年版 — 社団法人 日本下水道協会

1.2 使用管種

硬質ポリ塩化ビニル管φ200(VU) 外径 D_e=216.0 (mm), 管厚 T=7.0 (mm)

1.3 管きょの諸値

管きょの重要度 重要な幹線等管きょの継手構造 一体構造管きょ(可とう継手あり)

管体の単重	14.0 (kN/m^3)
モルタルの単重	21.0 (kN/m ³)
管体のヤング係数	3.00×10^6 (kN/m ²)
管体のポアソン比	0.380
管きょの有効長	4.000 (m)
管きょの土被り	1.200 (m)

1.4 地盤条件

	層 厚	土質	γ	γ'	С	φ	N值	F _c	D ₅₀
	(m)		(kN/m^3)	(kN/m^3)	(kN/m^2)	(度)		(%)	(mm)
1	0.500	砂質土	18.00	8.00	0.0	20.0	2.0	20.0	40.000
2	2.800	砂質土	17.00	7.00	0.0	24.0	5.0	20.0	40.000
3	1.900	粘性土	16.00	6.00	18.0	0.0	3.0		
4	3.300	砂質土	17.00	7.00	0.0	27.0	10.0	30.0	50.000
5	12.200	粘性土	16.00	6.00	12.0	0.0	2.0		
6	4.000	砂質土	17.00	7.00	0.0	28.0	12.0	35.0	45.000
Σ	24.700								

地下水位	G.L	3.800	(m)
表層地盤のせん断弾性波速度	$V_{\scriptscriptstyle \rm DS}$	140.01	(m/s)
基盤のせん断弾性波速度	$V_{\scriptscriptstyle \mathrm{BS}}$	300.00	(m/s)

2 設計水平震度

2.1 計算式

地盤面における設計水平震度は式(1)により求める。

 $k_{\rm hg}$ = C $_{\rm z}\cdot k_{\rm h0}$

- ここで、k_w: 地盤面における設計水平震度
 - k_w:設計水平震度の標準値(表1参照)
 - C_z: 地域別補正係数(表2参照)

表1 設計水平震度の標準値

地震動	地盤種別	設計水平震度の標準値 k _{ao}
レベル1		0.15
	I 種地盤	0.8
レベル2	Ⅱ 種地盤	0.7
	Ⅲ種地盤	0.6

表2	地域別補正係数
----	---------

 $\cdots \cdots (1)$

地域区分	地域別補正係数 C _z
A区分	1.0
B区分	0.85
C区分	0. 7

2.2 耐震設計上の地盤種別

耐震設計上の地盤種別は地盤の特性値T。より表3により求める。なお、地盤の特性値は式(2),(3)により求める。

$$T_{G} = 4 \cdot \Sigma \frac{H_{i}}{V_{si}} \qquad \cdots \cdots \cdots (2)$$

$$V_{si} = \begin{cases} 100 \cdot N_{i}^{1/3} & (1 \le N_{i} \le 25) & (粘性土層の場合) \\ \cdots \cdots \cdots (3) \end{cases} \qquad \cdots \cdots \cdots (3)$$

ここで、T₆: 地盤の特性値

(sec)

H_{i} :	i番目の土層の厚さ	(m)
V _{si} :	i番目の土層の平均せん断弾性波速度	(m/s)

N: i番目の土層の平均N値

表3 耐震設計上の地盤種別

地盤種別	地盤の特性値 T。(s)			
I種	$T_{c} < 0.2$			
Ⅱ種	$0.2 \leq T_{G} < 0.6$			
Ⅲ種	0.6≦T₀			

	層 厚	平均N值 V (r/czc)	$H_{\rm i}/V_{ m si}$			
	H_i (m)	上の裡類	$N_{\rm i}$	V _{si} (M/Se	V _{si} (m/sec)	
1	0.500	砂質土	2.0	$80 \times 2.0^{1/3} =$	100.79	0.005
2	2.800	砂質土	5.0	$80 \times 5.0^{1/3} =$	136.80	0.020
3	1.900	粘性土	3.0	$100 \times 3.0^{1/3} =$	144.22	0.013
4	3.300	砂質土	10.0	$80 \times 10.0^{1/3} =$	172.35	0.019
5	12.200	粘性土	2.0	$100 \times 2.0^{1/3} =$	125.99	0.097
6	4.000	砂質土	12.0	$80 \times 12.0^{1/3} =$	183.15	0.022
	24.700					0.176

$$T_{G} = 4 \cdot \Sigma \frac{H_{i}}{V_{si}} = 4 \times 0.176 = 0.706$$
 (sec)

よって、0.6≦T。(sec) であるから Ⅲ種地盤

設計水平震度の標準値

レベル1地震動 k_{b0} = 0.15 レベル2地震動 k_{b0} = 0.60

2.3 地域区分

位置 京都府 全域 (A地域)

地域別補正係数 C_z = 1.00

図2.1 地域区分

2.4 設計水平震度

地盤面における設計水平震度

レベル1地震動	$k_{\rm hg}$	=	$C_{z}\cdot k_{h0}$	=	1.00×0.15	=	0.15
レベル2地震動	k _{hg}	=	C _z ·k _{h0}	=	1.00×0.60	=	0.60

3 地震動の最大変位振幅

任意の深さzにおける地震動の最大変位振幅は式(4),(5)で求める。

$$U_{h}(z) = \frac{2}{\pi^{2}} \cdot S_{v} \cdot T_{s} \cdot \cos\left(\frac{\pi \cdot z}{2H}\right) \qquad \dots \dots \dots (4)$$

$$T_{s} = 1.25T_{6} = 1.25 \times 0.706 = 0.882 \text{ (sec)} \qquad \dots \dots \dots (5)$$

$$\text{C.Crv, } U_{h}(z) \colon \mathbb{R} \div z \subset \mathbb{R} \times 1/5 \otimes 1/5$$

5

設計応答速度

$$T_s = 0.882$$
 (s), A地域 より、
S_v = $\begin{cases} 0.2400 \quad \nu \sim \nu 1$ 地震動
 $0.8000 \quad \nu \sim \nu 2$ 地震動

地震動の最大変位振幅

$$U_{h}(z) = \begin{pmatrix} \frac{2}{\pi^{2}} \times 0.2400 \times 0.882 \times \cos\left(\frac{\pi \times z}{2 \times 24.700}\right) & (\nu \checkmark \nu 1 地震動) \\ \frac{2}{\pi^{2}} \times 0.8000 \times 0.882 \times \cos\left(\frac{\pi \times z}{2 \times 24.700}\right) & (\nu \prec \nu 2 地震動) \end{pmatrix}$$

4 地盤振動の波長

地盤振動の波長は式(6)~(8)で求める。

$$L = \frac{2L_1 \cdot L_2}{L_1 + L_2} \qquad \dots \dots \dots (6)$$

$$L_1 = T_s \cdot V_{DS} \qquad \dots \dots (7)$$

$$L_2 = T_s \cdot V_{BS} \qquad \dots \dots (8)$$

ここで、L:	地盤振動の波長		(m)
$V_{\text{\tiny DS}}$:	表層地盤のせん断弾性波速度	140.01	(m/s)
$V_{\scriptscriptstyle BS}$:	基盤のせん断弾性波速度	300.00	(m/s)
H:	表層地盤の厚さ	24.700	(m)
T _s :	表層地盤の固有周期		
	$T_s=1.25T_c = 1.25 \times 0.706 =$	0.882	(s)

$$L_1 = 0.882 \times 140.01 = 123.50$$
 (m)
 $L_2 = 0.882 \times 300.00 = 264.63$ (m)

地盤振動の波長

$$L = \frac{2 \times 123.50 \times 264.63}{123.50 + 264.63} = 168.41$$
 (m)

5 地盤の液状化の判定

5.1 計算式

液状化を生じる可能性があると判定された場合、式(9)~(19)により液状化に対する低効率FLを求め、 この値が1.0以下の土層は地震時に液状化するものとみなす。

ここで、F₁: 液状化に対する低効率

- R: 動的せん断強度比
- L: 地震時せん断応力比
- c.: 地震動特性による補正係数
- R: 繰り返し三軸強度比
- γ。: 地震時せん断応力比の深さ方向の低減係数
- k_{hg}: 地盤面における設計水平震度
- σ、: 全上載圧
 σ、: 有効上載圧
 x: 地表面からの深さ
- x: 地表面からの深さ
 (m)

 y_n: 地下水位面より浅い位置での土の単位体積重量
 (kN/m³)

 (kN/m^2)

 (kN/m^2)

(m)

- γ₁₂: 地下水位面より深い位置での土の単位体積重量 (kN/m³)
- γ'₃₂: 地下水位面より深い位置での土の有効単位体積重量 (kN/m³)
- h_{*}: 地下水位の深さ

- N: 標準貫入試験から得られるN値
- N_i: 有効上載圧 100kN/m²相当に換算したN値
- N_a: 粒度の影響を考慮した補正N値
- c₁, c₂: 細粒分含有率によるN値の補正係数
 FC: 細粒分含有率 (%)
 (粒径75µm以下の土粒子の通過質量百分率)
 - D₅₀: 平均粒径

(mm)

5.2 全上載圧

	地表面から	会上封正 - (1-N/ ²)					
	の深さ (m)	´王工載/土 σ、(KN/m)					
1	0.250	18.00×0.250	4.50				
2	1.900	4. 50+18. 00×0. 250+17. 00×1. 400	32.80				
3	4.250	32. 80+17. 00×1 . 400+16. 00×0 . 950	71.80				
4	6.850	71. 80+16. $00 \times 0.950+17.00 \times 1.650$	115.05				
5	14. 600	115. 05+17. 00 \times 1. 650+16. 00 \times 6. 100	240.70				
6	22. 700	$240.70+16.00 \times 6.100+17.00 \times 2.000$	372.30				

5.3 有効上載圧

	地表面から	右动上栽正 _' (1-N1/m²)	
	の深さ (m)		
1	0.250	18.00×0.250	4.50
2	1.900	4. 50+18. 00×0. 250+17. 00×1. 400	32.80
3	4.250	32. 80+17. 00×1 . 400+16. 00×0 . 500+6. 00×0 . 450	67.30
4	6.850	67. 30+6. 00×0. 950+7. 00×1. 650	84.55
5	14.600	84. 55+7. 00×1. 650+6. 00×6. 100	132.70
6	22. 700	132.70+6.00×6.100+7.00×2.000	183.30

5.4 タイプ I 地震動

5.4.1 繰り返し三軸強度比

	Ν	FC (%)	D₅₀ (mm)	σ'_{v} (kN/m^2)	C ₁	C_2	N_1	N _a	$R_{\scriptscriptstyle L}$
1	2.0	20.0	40.000	4.50	1.200	0.556	4.564	6.032	0.166
2	5.0	20.0	40.000	32.80	1.200	0.556	8.268	10.478	0.219
3	3.0			67.30					
4	10.0	30.0	50.000	84.55	1.400	1.111	11.000	16.511	0.275
5	2.0			132.70					
6	12.0	35.0	45.000	183.30	1.500	1.389	8.054	13.469	0.248

ただし、R_L:繰り返し三軸強度比

5.4.2 地震時せん断応力比

	x (m)	γ d	$k_{ m hg}$	σ_{v} (kN/m^2)	σ', (kN/m²)	L
1	0.250	0.996	0.15	4.50	4.50	0.149
2	1.900	0.972	0.15	32.80	32.80	0.146
3	4.250		0.15	71.80	67.30	
4	6.850	0.897	0.15	115.05	84.55	0. 183
5	14.600		0.15	240.70	132.70	
6	22.700	0.660	0.15	372.30	183.30	0.201

ただし、L: 地震時せん断応力比

5.4.3 液状化に対する低効率

	RL	C_w	R	L	F_{L}	判 定
1	0.166	1.000	0.166	0.149	1.112	非液状化層
2	0.219	1.000	0.219	0.146	1.503	非液状化層
3						非液状化層
4	0.275	1.000	0.275	0.183	1.501	非液状化層
5						非液状化層
6	0.248	1.000	0.248	0.201	1.236	非液状化層

ただし、F_L:液状化に対する低効率

F₁≤1.0なら液状化層、F₁>1.0なら非液状化層

5.5 タイプⅡ地震動

5.5.1 繰り返し三軸強度比

	Ν	FC (%)	D₅₀ (mm)	σ'_{v} (kN/m^2)	C ₁	C_2	N_1	N _a	$R_{\scriptscriptstyle L}$
1	2.0	20.0	40.000	4.50	1.200	0.556	4.564	6.032	0.166
2	5.0	20.0	40.000	32.80	1.200	0.556	8.268	10.478	0.219
3	3.0			67.30					
4	10.0	30.0	50.000	84.55	1.400	1.111	11.000	16.511	0.275
5	2.0			132.70					
6	12.0	35.0	45.000	183.30	1.500	1.389	8.054	13.469	0.248

ただし、R₁:繰り返し三軸強度比

5.5.2 地震時せん断応力比

	x (m)	γ d	$k_{ m hg}$	σ_{v} (kN/m^2)	σ', (kN/m²)	L
1	0.250	0.996	0.60	4.50	4.50	0.598
2	1.900	0.972	0.60	32.80	32.80	0.583
3	4.250		0.60	71.80	67.30	
4	6.850	0.897	0.60	115.05	84.55	0. 733
5	14.600		0.60	240.70	132.70	
6	22.700	0.660	0.60	372.30	183.30	0.804

ただし、L:地震時せん断応力比

5.5.3 液状化に対する低効率

	RL	C_w	R	L	$F_{\scriptscriptstyle L}$	判 定
1	0.166	1.218	0.202	0.598	0.339	液状化層
2	0.219	1.393	0.305	0.583	0.523	液状化層
3						非液状化層
4	0.275	1.577	0.434	0.733	0.592	液状化層
5						非液状化層
6	0.248	1.489	0.370	0.804	0.460	液状化層

ただし、F_L:液状化に対する低効率

F₁≤1.0なら液状化層、F₁>1.0なら非液状化層

6 マンホールと管きょの接続部の検討

6.1 地震動による屈曲角および抜出し量

6.1.1 計算式

マンホールと管きょの接続部の継ぎ手の屈曲角はマンホールおよび本管の回転角と同じとして式(21), (22)で求める(図6.1参照)。

また、地震動による本管のマンホールからの抜出し量は式(23),(24)で求める。

θ	=	$\tan^{-1}\left(\frac{\Delta U}{h}\right)$	(21)
$\Delta\mathrm{U}$	=	U_h (0) – U_h (h) = U_0 – U_1	$\cdots \cdots (22)$
δ	=	$\epsilon_{gd} \cdot 1$	$\cdots \cdots (23)$
٤ _{gd}	=	$\frac{\pi}{L}$ · U _p	····· (24)

ここで、 θ:	マンホールおよび本管の回転角(継ぎ手の屈曲角)		(rad)
δ :	地震動による本管のマンホールからの抜出し量		(m)
$U_{h}(z)$:	深さzにおける最大変位振幅。式(4)で求める。		(m)
z:	地表面からの深さ		(m)
U_0 :	地表面における最大変位振幅		(m)
U_1 :	マンホール底面位置における最大変位振幅		(m)
U_p :	管きょ中心深度(1.308(m))における最大変位振幅		(m)
h:	マンホールの深さ	2.900	(m)
٤ _{gd} :	地震動により地盤に生じるひずみ		
1:	管の有効長	4.000	(m)
L:	地盤振動の波長 1	68.41	(m)

6.1.2 レベル1地震動

地表面における最大変位振幅

$$U_{0} = \frac{2}{\pi^{2}} \cdot S_{v} \cdot T_{s} \cdot \cos\left(\frac{\pi \cdot z}{2H}\right)$$
$$= \frac{2}{\pi^{2}} \times 0.2400 \times 0.882 \times \cos\left(\frac{\pi \times 0.000}{2 \times 24.700}\right) = 0.04290 \text{ (m)}$$

マンホール底面位置における最大変位振幅

U₁ =
$$\frac{2}{\pi^2} \times 0.2400 \times 0.882 \times \cos\left(\frac{\pi \times 2.900}{2 \times 24.700}\right) = 0.04217 \text{ (m)}$$

管きょ中心深度における最大変位振幅

$$U_{p} = \frac{2}{\pi^{2}} \times 0.2400 \times 0.882 \times \cos\left(\frac{\pi \times 1.308}{2 \times 24.700}\right) = 0.04275 \,(\text{m})$$

地震動により地盤に生じるひずみ

$$\epsilon_{\rm gd} = \frac{\pi}{L} \cdot U_{\rm p} = \frac{\pi}{168.41} \times 0.04275 = 0.000798$$

地震動による屈曲角

地震動による抜出し量

$$\delta = \epsilon_{gd} \cdot 1 = 0.000798 \times 4.000$$

= 0.0032(m) = 3.19(mm) \leq 27.0(mm)(0k)

6.1.3 レベル2地震動

地表面における最大変位振幅

$$U_{0} = \frac{2}{\pi^{2}} \cdot S_{v} \cdot T_{s} \cdot \cos\left(\frac{\pi \cdot z}{2H}\right)$$
$$= \frac{2}{\pi^{2}} \times 0.8000 \times 0.882 \times \cos\left(\frac{\pi \times 0.000}{2 \times 24.700}\right) = 0.14300 \text{ (m)}$$

マンホール底面位置における最大変位振幅

U₁ =
$$\frac{2}{\pi^2} \times 0.8000 \times 0.882 \times \cos\left(\frac{\pi \times 2.900}{2 \times 24.700}\right) = 0.14058 \text{ (m)}$$

管きょ中心深度における最大変位振幅

$$U_{p} = \frac{2}{\pi^{2}} \times 0.8000 \times 0.882 \times \cos\left(\frac{\pi \times 1.308}{2 \times 24.700}\right) = 0.14251 \,(\text{m})$$

地震動により地盤に生じるひずみ

$$\varepsilon_{\rm gd} = \frac{\pi}{L} \cdot U_{\rm p} = \frac{\pi}{168.41} \times 0.14251 = 0.002658$$

地震動による屈曲角

地震動による抜出し量

$$\delta = \epsilon_{gd} \cdot 1 = 0.002658 \times 4.000$$

= 0.0106 (m) = 10.63 (mm) \leq 54.0 (mm)(0k)

6.2 地盤の液状化に伴う永久ひずみによる抜出し量

地盤の永久ひずみによる本管のマンホールからの抜出し量は式(25)で求める。

δ: 管の有効長 4.000 (m)

レベル2地震動 ε ε=1.20(%)

6.3 地盤の傾斜に伴う永久ひずみによる抜出し量

非液状化の傾斜地盤(地表面勾配が5%以上の盛土)に管きょを敷設する場合には式(26)で本管のマンホ ールからの抜出し量を求める(図6.2参照)。

図6.2 傾斜地盤に敷設された管きょ

 $\delta = \epsilon_{g} \cdot 1$

 $\dots \dots \dots \dots (26)$

ここで、	δ :	地盤の永久ひずみによる本管の		
		マンホールからの抜出し量		(m)
	: _g ع	地盤の永久ひずみ		
	δ :	管の有効長	4.000	(m)

レベル2地震動
$$\epsilon_{a}=1.30\%$$

 $\delta = 0.0130 \times 4.000 = 0.0520(m) = 52.0(mm) \leq \delta_{a}=54.0(mm)$ ······(0k)

6.4 地盤の硬軟急変化部通過の影響による抜出し量

推進工法により敷設された管きょが地盤の硬軟急変化部を通過する場合、地盤の永久ひずみによる本 管のマンホールからの抜出し量は式(27)で求める。

$$\delta = \epsilon_{gd2} \cdot 1 \qquad \cdots \cdots (27)$$

ここで、δ: 硬軟境界部に生じるひずみによる

本管のマンホールからの抜出し量 (m)

- ε 🖽: 硬軟境界部に生じるひずみ
- δ: 管の有効長 4.000 (m)

レベル2地震動 ε =0.50(%)

7 管きょ継手部の検討

7.1 地震動による屈曲角および抜き出し量

7.1.1 計算式

本管継手部の屈曲角は式(28)で求める。また、地震動による抜き出し量は式(29),(30)で求める。

 $\theta = \left(\frac{2\pi}{T_s}\right)^2 \cdot \frac{U_h(z)}{V_s^2} \cdot 1 \qquad \cdots \cdots (28)$ $\delta = \varepsilon_{gd} \cdot 1 \qquad \cdots \cdots (29)$

$$\varepsilon_{\rm gd} = \frac{\pi}{L} \cdot U_{\rm h} (z) \qquad (30)$$

ここで、 θ:	地震動による屈曲角		(rad)
δ :	地震動による抜き出し量		(m)
$U_{h}(z)$:	管きょ敷設深度(z)における最大変位振幅		
	式(4)で求める		(m)
z:	管きょ敷設深度	1.308	(m)
T _s :	表層地盤の固有周期	0.882	(s)
V_s :	表層地盤のせん断弾性波速度	140.01	(m/s)
ε _{gd} :	地震動により地盤に生じるひずみ		
1:	管の有効長	4.000	(m)
L:	地盤振動の波長	168.41	(m)

7.1.2 レベル1地震動

管きょ中心深度における最大変位振幅

$$U_{h}(z) = \frac{2}{\pi^{2}} \cdot S_{v} \cdot T_{s} \cdot \cos\left(\frac{\pi \cdot z}{2H}\right)$$
$$= \frac{2}{\pi^{2}} \times 0.2400 \times 0.882 \times \cos\left(\frac{\pi \times 1.308}{2 \times 24.700}\right) = 0.04275 \quad (m)$$

$$\epsilon_{\rm gd} = \frac{\pi}{L} U_{\rm h} (z) = \frac{\pi}{168.41} \times 0.04275 = 0.000798$$

地震動による屈曲角

地震動による抜き出し量

 $\delta = \epsilon_{gd} \cdot 1 = 0.000798 \times 4.000$ = 0.0032(m) = 3.19(mm) \leq 27.0(mm)(0k)

7.2 地盤の液状化に伴う永久ひずみによる抜出し量

地盤の液状化に伴う永久ひずみによる管きょ継手部の抜出し量は式(31)で求める。

- ここで、δ: 地盤の永久ひずみによる本管の
 マンホールからの抜出し量 (m)
 ε: 地盤の永久ひずみ
 - δ: 管の有効長 4.000 (m)

レベル2地震動 ε =1.20(%)

7.3 液状化に伴う地盤の沈下による屈曲角と抜出し量

7.3.1 計算式

地盤の液状化に伴う地盤沈下による屈曲角は、マンホール間の沈下状況を図7.1のように2次曲線で近 似し、式(32)で求める。また、液状化に伴う地盤沈下による抜出し量は式(33)で求める。

図7.1 地盤の沈下による屈曲角

ここで、θ: 継ぎ手の屈曲角 (rad)

- δ.....:最大抜出し量 (m)
 h:液状化に伴う地盤沈下量 (m)
 液状化層の合計厚の5%とする。
 - L: マンホールスパン 20.000 (m)
 - 1:管の有効長4.000 (m)
 - n:マンホールスパンの管きょ 5 (本)

7.3.2 レベル2地震動

液状化層の合計厚 24.700(m) 液状化に伴う地盤沈下量 h = 24.700×0.05 = 1.235(m)

液状化に伴う地盤の沈下による屈曲角

$$\theta = 2 \cdot \tan^{-1} \left(\frac{4h}{L^2} \cdot 1 \right) = 2 \times \tan^{-1} \left(\frac{4 \times 1.235}{20.000^2} \times 4.000 \right)$$
$$= 0.0987 (rad) = 5.656 (\underline{\mathfrak{g}}) > \theta_a = 5.0 (\underline{\mathfrak{g}}) \qquad \dots \dots \dots \dots (NG)$$

液状化に伴う地盤の沈下による抜出し量

7.4 地盤の傾斜に伴う永久ひずみによる抜出し量

非液状化の傾斜地盤(地表面勾配が5%以上の盛土)に管きょを敷設する場合には式(34)で管きょ継手部の抜出し量を求める(図7.2参照)。

図7.2 傾斜地盤に敷設された管きょ

 $\delta = \epsilon_{g} \cdot 1$

 $\dots \dots (34)$

ここで、δ: 地盤の永久ひずみによる 管きょ継手部の抜出し量 (m) ε_s: 地盤の永久ひずみ δ: 管の有効長 4.000 (m)

レベル1地震動 ε ε=1.30(%)

 $\delta = 0.0130 \times 4.000 = 0.0520 \,(\text{m}) = 52.0 \,(\text{mm}) > \delta_{a} = 27.0 \,(\text{mm}) \cdots \cdots \cdots \cdots (\text{NG})$

7.5 地盤の硬軟急変化部通過の影響による抜出し量

推進工法により敷設された管きょが地盤の硬軟急変化部を通過する場合、地盤の永久ひずみによる管 きょ継手部の抜出し量は式(35)で求める。

δ: 管の有効長 4.000 (m)

レベル2地震動 ε =0.50(%)

$$\delta = 0.0050 \times 4.000 = 0.0200 \,(\text{m}) = 20.0 \,(\text{mm}) > \delta_{a} = (\text{mm}) \,(\text{NG})$$

7.6 浅層不整形地盤の影響による抜出し量

7.6.1 計算式

浅層不整形地盤の影響による抜出し量は式(36)~(38)で求める(図7.3参照)。

図7.3 傾斜地盤に敷設された管きょ

δ = ε	₆₂ · 1	(36)
$\varepsilon_{G1} = \frac{\pi}{I}$	$ _{h} U_{h}(z) $	(37)
ε _{G2} = √	$\epsilon \frac{2}{G_1} + \epsilon \frac{2}{G_3}$	(38)
ここで、δ:	浅層不整形地盤の影響による抜出し量	(m)
٤ ۵۱:	急変地盤設計地点における一様地盤ひずみ	

- ε ...: 急変地盤ひずみ
- ε_ω: ε_ω=0.30% 1: 管の有効長 4.00 (m)
- L: 地盤振動の波長 168.409 (m)
- U_h(z):管きょ敷設深度(z)における最大変位振幅
 (m)

 式(4)で求める
 (m)

 z:管きょ中心の深度
 1.308 (m)

7.6.2 レベル2地震動

管きょ中心深度における最大変位振幅

$$U_{\rm h}(z) = \frac{2}{\pi^{2}} \cdot S_{\rm v} \cdot T_{\rm s} \cdot \cos\left(\frac{\pi \cdot z}{2{\rm H}}\right)$$
$$= \frac{2}{\pi^{2}} \times 0.8000 \times 0.882 \times \cos\left(\frac{\pi \times 1.308}{2 \times 24.700}\right) = 0.14251 \quad ({\rm m})$$

急変地盤設計地点における一様地盤ひずみ

$$\epsilon_{G1} = \frac{\pi}{L} \cdot U_{h}(z) = \frac{\pi}{168.41} \times 0.14251 = 0.00266$$

急変地盤ひずみ

δ

$$\epsilon_{G2} = \sqrt{\epsilon_{G1}^2 + \epsilon_{G3}^2} \sqrt{0.00266^2 + 0.00300^2} = 0.00401$$

浅層不整形地盤の影響による抜出し量

8 管きょの管軸方向の検討

8.1 管きょの軸方向ひずみ

8.1.1 計算式

埋設鋼管路の軸ひずみは、レベル1地震動では降伏点ひずみ(11%)以下、レベル2地震動では許容ひずみ (46t/D %)以下であれば安全である。

ここで、D は管径、t は管厚である。

レベル1地震動による管体ひずみは式(39)~(42)で求める。

$\epsilon_{1x} = \sqrt{\gamma}$	$\cdot \epsilon {}^2_{1L} + \epsilon {}^2_{1B}$	$\cdots \cdots (39)$
$\varepsilon_{1B} = \alpha_2 \cdots$	$\frac{2 \pi \cdot D}{L} \cdot \epsilon_{G}$	(40)
$\varepsilon_{1L} = \alpha_1 \cdot $	ξG	$\cdots \cdots \cdots (41)$

$$\varepsilon_{\rm G} = \frac{\pi \cdot U_{\rm h}(z)}{L} \qquad (42)$$

ここで、ε μ: レベル1地震動による軸ひずみと曲げひずみの合成ひずみ

- ε Β: 埋設管路の曲げひずみ
- ε μ: 埋設管路の軸ひずみ
- γ : 重畳係数 γ=3.12
- α1: 管軸方向の地盤変位の伝達係数。式(43)で求める。
- α2: 管軸直角方向の地盤変位の伝達係数。式(43)で求める。
- D:管の外径 0.2160 (m)
- L: 地盤振動の波長 168.4 (m)
- ε_c: 管軸方向の地盤ひずみ (m)
- U_h(z): 管きょ敷設深度における最大変位振幅。式(4)で求める。 (m)

1.308 (m)

z: 管きよ敷設深度

$$K_{g1} = C_1 \cdot \frac{\gamma_{t}}{g} \cdot V_{DS}^2 , \quad K_{g2} = C_2 \cdot \frac{\gamma_{t}}{g} \cdot V_{DS}^2$$
 (45)

L' =
$$\sqrt{2 \cdot L} = \sqrt{2 \cdot \times 168.4} = 238.2$$
 (m)(46)

ここで、L': 地盤振動の見かけの波長 (m)
E: 管きょの弾性係数
$$3.00 \times 10^6$$
 (kN/m²)
A: 管きょの断面積
 $A = \pi / 4 \times (0.2160^2 - 0.2020^2) = 0.004596$ (m²)
I: 管きょの断面2次モーメント
 $I = \pi / 64 \times (0.2160^4 - 0.2020^4) = 0.000025$ (m⁴)
K_s: 管軸方向の単位長さ当たりの地盤剛性係数 (kN/m²)

K_a: 管軸直角方向の単位長さ当たりの地盤剛性係数 (kN/m²)

γ_{i} :表層地盤の換算単位体積重量 γ_{i} = $\Sigma \gamma_{i}$ H_i/ Σ H_i (kN/m³)

	層厚	単位体積重量	$\gamma_{\rm ti} H_{\rm i}$
	H_i (m)	$\gamma_{\rm ti}$ (kN/m ³)	(kN/m^2)
1	0.500	18.00	9.00
2	2.800	17.00	47.60
3	1.900	16.00	30.40
4	3.300	17.00	56.10
5	12.200	16.00	195.20
6	4. 000	17.00	68.00
	24. 700		406.30
	406 20		

$$\gamma_{\rm t} = \frac{406.30}{24.700} = 16.45 \ ({\rm kN/m^3})$$

g: 重力の加速度

9.8 (N/s^2)

V₁₀: 表層地盤のせん断弾性波速度

140.01 (m/s)

C₁: 管軸方向単位長さ当たりの地盤剛性係数に対する定数 C₁=1.50 C₂: 管軸直角方向単位長さ当たりの地盤剛性係数に対する定数 C₂=3.00

管軸方向および管軸直角方向の単位長さ当たりの地盤剛性係数

$$\begin{array}{rcl} K_{g1} & = & C_{1} \cdot \frac{\gamma_{t}}{g} \cdot V_{DS}^{2} & = & 1.50 \times \frac{16.45}{9.8} \times 140.01^{2} & = & 49355.23 & (kN/m^{2}) \\ K_{g2} & = & C_{2} \cdot \frac{\gamma_{t}}{g} \cdot V_{DS}^{2} & = & 3.00 \times \frac{16.45}{9.8} \times 140.01^{2} & = & 98710.46 & (kN/m^{2}) \end{array}$$

$$\lambda_{1} = \sqrt{\frac{K_{g1}}{E \cdot A}} = \sqrt{\frac{49355.23}{3.00 \times 10^{6} \times 0.004596}} = 1.8919$$
$$\lambda_{2} = 4\sqrt{\frac{K_{g2}}{E \cdot I}} = 4\sqrt{\frac{98710.46}{3.00 \times 10^{6} \times 0.00025}} = 6.0157$$

管軸方向および管軸直角方向の地盤変位の伝達係数

$$\alpha_{1} = \frac{1}{1 + \left(\frac{2\pi}{\lambda_{1} \cdot L'}\right)^{2}} = \frac{1}{1 + \left(\frac{2\pi}{1.8919 \times 238.2}\right)^{2}} = 0.9998$$

$$\alpha_{2} = \frac{1}{1 + \left(\frac{2\pi}{\lambda_{2} \cdot L}\right)^{4}} = \frac{1}{1 + \left(\frac{2\pi}{6.0157 \times 168.4}\right)^{4}} = 1.0000$$

22

レベル2地震動による管体ひずみは式(47)~(53)で求める。

$$\varepsilon_{2x} = \sqrt{\gamma \cdot \varepsilon_{2L}^{2} + \varepsilon_{2B}^{2}} \qquad \cdots \cdots \cdots (47)$$

$$\varepsilon_{2x} = \alpha_{2x} \frac{2\pi \cdot D}{2\pi} \cdot \varepsilon_{2x} \qquad \cdots \cdots \cdots (47)$$

$$\varepsilon_{2B} = \alpha_2 \cdot \underline{\qquad} L \quad (48)$$

$$\varepsilon_{2L} = \begin{cases} \frac{L}{\xi} & (L \leq L_{1}) \\ \frac{L}{\kappa \cdot \xi} + \left(1 - \frac{1}{\kappa}\right) \cdot \varepsilon_{y} & (L_{1} < L \leq L_{2}) \\ \varepsilon_{\text{ Gmax}} & (L_{2} \leq L) \end{cases}$$
 (49)

$$L_{2} = \kappa \cdot \xi \cdot \left\{ \epsilon_{\text{Gmax}} - \left(1 - \frac{1}{\kappa} \right) \cdot \epsilon_{y} \right\} \qquad (51)$$

$$\xi = 2\sqrt{2 \cdot \frac{E \cdot t}{\tau}}$$
 (52)

- ε 28: 埋設管路の曲げひずみ
- ε μ: 埋設管路の軸ひずみ
- ε,: 管の降伏ひずみ
- κ: 管路のひずみ硬化特性値 0.100

1.500

(%)

ε Gmax: S_v·maxにおける地盤のひずみ S',::max: 設計最大応答速度 0.800 (m/s) T₆: 表層地盤の固有周期 0.706 (s) z: 管きょ埋設深さ 1.308 (m) H: 地表面から基盤層までの深さ 24.700 (m) τ:管きょと地盤の摩擦力 10.00 (kN/m^2) 0.0070 (m)

t: 管厚

8.1.2 レベル1地震動

管きょ中心深度における最大変位振幅

$$U_{h}(z) = \frac{2}{\pi^{2}} \cdot S_{v} \cdot T_{s} \cdot \cos\left(\frac{\pi \cdot z}{2H}\right)$$
$$= \frac{2}{\pi^{2}} \times 0.2400 \times 0.882 \times \cos\left(\frac{\pi \times 1.308}{2 \times 24.700}\right) = 0.04275 \text{ (m)}$$

管軸方向の地盤ひずみ

$$\epsilon_{\rm G} = \frac{\pi \cdot U_{\rm h}(z)}{L} = \frac{\pi \times 0.04275}{168.4} = 0.00080$$

埋設管路の軸ひずみ

 $\epsilon_{1L} = \alpha_{1} \cdot \epsilon_{G} = 0.9998 \times 0.00080 = 0.00080$

埋設管路の曲げひずみ

$$\epsilon_{1B} = \alpha_{2} \cdot \frac{2 \pi \cdot D}{L} \cdot \epsilon_{G} = 1.0000 \times \frac{2 \pi \times 0.216}{168.4} \times 0.00080 = 0.00001$$

レベル1地震動による軸ひずみと曲げひずみの合成ひずみ

$$\varepsilon_{1x} = \sqrt{\gamma \cdot \varepsilon_{1L}^{2} + \varepsilon_{1B}^{2}} = \sqrt{3.12 \times 0.00080^{2} + 0.00001^{2}}$$

= 0.0014 = 0.14 (%) > ε_{a} = 0.11 (%)(NG)

8.2 管きょの軸方向応力度

8.2.1 計算式

管軸方向断面引張応力度は式(54)~(56)で照査する。

$$\sigma_{\rm X} = \sqrt{\gamma \cdot \sigma_{\rm L}^2 + \sigma_{\rm B}^2} \qquad \cdots \cdots \cdots (54)$$

$$\sigma_{\rm L} = \alpha_{\rm l} \cdot \xi_{\rm l} \cdot \frac{\pi \cdot U_{\rm h}}{\rm L} \cdot E \qquad \cdots \cdots \cdots \cdots (55)$$

$$\sigma_{\rm B} = \alpha_{\rm 2} \cdot \xi_{\rm 2} \cdot \frac{2 \pi \cdot {\rm D} \cdot {\rm U}_{\rm h}}{{\rm L}^{\rm 2}} \cdot {\rm E} \qquad (56)$$

ここで、	σ_x :	可とう継手から管軸方向に距離 x(m) の位置における軸方向	
		力と曲げ方向応力の合成応力	(kN/m^2)
	$\sigma_{\scriptscriptstyle L}:$	管きょの軸方向応力	(kN/m^2)
	σ ":	管きょの曲げ方向応力	(kN/m^2)
	U_{h} :	管きょ敷設深度における最大変位振幅。式(4)で求める。	(m)
	$_{\mathrm{Z}}$:	管きょ敷設深度 1.308	(m)
	$\Gamma:$	地盤振動の波長 168.4	(m)
	Е:	管きょの弾性係数 3.00×10 ⁶	(kN/m^2)
	D:	管の外径 0.216	(m)
	Α:	管きょの断面積	
		$A = \pi / 4 \times (0.2160^{2} - 0.2020^{2}) = 0.004596$	(m ²)
	1:	管長 4.000	(m)
	γ :	重畳係数 γ=3.12	
	$\alpha_{\scriptscriptstyle 1}$:	管軸方向の地盤変位の伝達係数。式(57)で求める。	

- α2: 管軸直角方向の地盤変位の伝達係数。式(57)で求める。
- ξ: 管きょの可とう継手がある場合の応力補正係数。式(61)で求める。
- ξ:管きょの可とう継手がある場合の応力補正係数。式(62)で求める。

8.2.2 地盤変位の伝達係数

管軸方向および管軸直角方向の地盤変位の伝達係数は式(57)~(60)で照査する。

$$K_{g1} = C_1 \cdot \frac{\gamma_t}{g} \cdot V_{DS}^2 , \quad K_{g2} = C_2 \cdot \frac{\gamma_t}{g} \cdot V_{DS}^2$$
 (59)

L' =
$$\sqrt{2 \cdot L} = \sqrt{2 \cdot \times 168.4} = 238.2$$
 (m)(60)

ここで、L': 地盤振動の見かけの波長 (m)
E: 管きょの弾性係数
$$3.00 \times 10^{\circ}$$
 (kN/m²)
A: 管きょの断面積 $A = \pi / 4 \times (0.2160^{\circ} - 0.2020^{\circ}) = 0.00460$ (m²)
I: 管きょの断面2次モーメント
 $I = \pi / 64 \times (0.2160^{\circ} - 0.2020^{\circ}) = 0.00003$ (m⁴)
K_{s1}: 管軸方向の単位長さ当たりの地盤剛性係数 (kN/m²)
K_{s2}: 管軸直角方向の単位長さ当たりの地盤剛性係数 (kN/m²)

$$\gamma_{,:}$$
表層地盤の換算単位体積重量 $\gamma_{,=} \Sigma \gamma_{,i} H_i / \Sigma H_i$ (kN/m³)

	層厚	単位体積重量	$\gamma_{\rm ti} H_{\rm i}$
	H_i (m)	γ_{ti} (kN/m ³)	(kN/m^2)
1	0.500	18.00	9.00
2	2.800	17.00	47.60
3	1.900	16.00	30.40
4	3.300	17.00	56.10
5	12.200	16.00	195.20
6	4.000	17.00	68.00
	24.700		406.30
~	406.30	16.45 ($l_{\rm N}/m^3$))

$$\gamma_{\rm t} = \frac{100.00}{24.700} = 16.45 \ (\rm kN/m^3)$$

g: 重力の加速度

9.8 (N/s^2)

V_{DS}: 表層地盤のせん断弾性波速度

- 140.01 (m/s)
- C₁: 管軸方向単位長さ当たりの地盤剛性係数に対する定数 C₁=1.50
- C₂: 管軸直角方向単位長さ当たりの地盤剛性係数に対する定数 C₂=3.00

管軸方向および管軸直角方向の単位長さ当たりの地盤剛性係数

$$K_{g1} = C_{1} \cdot \frac{\gamma_{t}}{g} \cdot V_{DS}^{2} = 1.50 \times \frac{16.45}{9.8} \times 140.01^{2} = 49355.2 \quad (kN/m^{2})$$

$$K_{g2} = C_{2} \cdot \frac{\gamma_{t}}{g} \cdot V_{DS}^{2} = 3.00 \times \frac{16.45}{9.8} \times 140.01^{2} = 98710.5 \quad (kN/m^{2})$$

$$\lambda_{1} = \sqrt{\frac{K_{g1}}{E \cdot A}} = \sqrt{\frac{49355.2}{3.00 \times 10^{6} \times 0.00460}} = 1.8919$$
$$\lambda_{2} = 4\sqrt{\frac{K_{g2}}{E \cdot I}} = 4\sqrt{\frac{98710.5}{3.00 \times 10^{6} \times 0.0000}} = 6.0157$$

管軸方向および管軸直角方向の地盤変位の伝達係数

$$\alpha_{1} = \frac{1}{1 + \left(\frac{2\pi}{\lambda_{1} \cdot L'}\right)^{2}} = \frac{1}{1 + \left(\frac{2\pi}{1.8919 \times 238.2}\right)^{2}} = 0.9998$$

$$\alpha_{2} = \frac{1}{1 + \left(\frac{2\pi}{\lambda_{2} \cdot L}\right)^{4}} = \frac{1}{1 + \left(\frac{2\pi}{6.0157 \times 168.4}\right)^{4}} = 1.0000$$

8.2.3 管きょの応力補正係数

管きょの可とう継手がある場合の応力補正係数は式(61),(62)で求める。

$$\begin{aligned} \xi_{-1} &= \frac{\sqrt{\phi_{-1}^{2} + \phi_{-2}^{2}}}{\exp\left(-\nu' \cdot \lambda_{-1} \cdot L'\right) - \exp\left(-\nu' \cdot \lambda_{-1} \cdot L'\right)} & \dots \dots \dots (61) \\ \xi_{-2} &= \sqrt{\phi_{-3}^{2} + \phi_{-4}^{2}} & \dots \dots \dots (62) \\ \nu &= \frac{1}{L} = \frac{4.000}{168.4} = 0.0238 , \nu' = \frac{1}{L'} = \frac{4.000}{238.2} = 0.0168 \\ \mu &= \frac{x}{L} = \frac{2.000}{168.4} = 0.0119 , \mu' = \frac{x}{L'} = \frac{2.000}{238.2} = 0.0084 \\ \square \mathbb{C}\mathbb{C}\mathbb{C}, 1: \ \mathbb{E}B\mathcal{B}\mathcal{O} \exists b \ni \mathbb{R} \ddagger \mathbb{B}\mathcal{O} \notin \mathbb{R} \land 4.000 \ (m) \\ x: \ \mathbb{K}\mathcal{D} \not{B} \nexists \amalg \square \mathbb{C} \ni \mathbb{R} \nexists \mathbb{B} \square \square \mathbb{R} \land 4.000 \ (m) \\ x: \ \mathbb{K}\mathcal{D} \not{B} \nexists \amalg \square \mathbb{C} \ni \mathbb{R} \nexists \mathbb{B} \square \square \mathbb{R} \land 4.000 \ (m) \\ \chi: \ \mathbb{K}\mathcal{D} \not{B} \nexists \amalg \square \mathbb{C} \ni \mathbb{C} \nexists \mathbb{R} \land \mathbb{R} \exists \mathbb{R} \square \mathbb{R} \ni \mathbb{C} \land \mathbb{C} \land \mathbb{C} \ni \mathbb{C} \exists \mathbb{R} ? = \frac{2.000}{238.2} = 0.0084 \\ \mathbb{C}\mathbb{C}\mathbb{C}, 1: \ \mathbb{E}B\mathcal{D} \square \forall \ni \mathbb{R} \nexists \square \mathbb{R} \ni \mathbb{R} \ni \mathbb{R} \ni \mathbb{R} \exists \mathbb{R} \square \mathbb{R} \lor \mathbb{R} \land \mathbb{R} \ni \mathbb{R} \ni \mathbb{R} \lor \mathbb{R} \land \mathbb{R} \ni \mathbb{R} \Rightarrow \mathbb{R} \land \mathbb{R} \ni \mathbb{R} \ni \mathbb{R} \lor \mathbb{R} \land \mathbb{R} \ni \mathbb{R} \land \mathbb{R} \Rightarrow \mathbb{R} \lor \mathbb{R} \land \mathbb{R} \ni \mathbb{R} \land \mathbb{R} \Rightarrow \mathbb{R} \land \mathbb{R} \ni \mathbb{R} \land \mathbb{R} \Rightarrow \mathbb{R} \land \mathbb{R} \Rightarrow \mathbb{R} \land \mathbb{R} \ni \mathbb{R} \lor \mathbb{R} \land \mathbb{R} \Rightarrow \mathbb{R} \land \mathbb{R} \Rightarrow \mathbb{R} \lor \mathbb{R} \land \mathbb{R} \Rightarrow \mathbb{R} \land \mathbb{R} \Rightarrow \mathbb{R} \Rightarrow \mathbb{R} \land \mathbb{R} \Rightarrow \mathbb{R} \Rightarrow \mathbb{R} \land \mathbb{R} \Rightarrow \mathbb{R} \Rightarrow \mathbb{R} \Rightarrow \mathbb{R} \land \mathbb{R} \Rightarrow \mathbb{R} \Rightarrow \mathbb{R} \land \mathbb{R} \Rightarrow \mathbb{R} \Rightarrow$$

$$\begin{split} \phi_{-3} &= f_{-3} \cdot e_{-1} - f_{-1} \cdot e_{-1} - \sin(2\pi \mu) & \dots (63c) \\ &= 0.000 \times 1505, 473 \div 0.009 \times 1965, 751 - 0.009 \times 1965, 751 - \sin(2\pi \times 0.0119) \\ &= -0.0745 \\ \phi_{-4} &= e_{+} + f_{-2} \cdot e_{-} - f_{-5} \cdot e_{-1} - \cos(2\pi \mu) & \dots (63d) \\ &= -1505, 473 \div 1.000 \times 1505, 473 \div 1.000 \times 1965, 751 - 0.748 \times 1965, 751 - \cos(2\pi \times 0.0119) \\ &= 493, 6011 \\ \beta_{-4} &= \frac{1}{\sqrt{\frac{4E1}{4E1}}} = \sqrt{\frac{98710.5}{4 \times 3.00 \times 10^{-6} \times 0.00003}} & \dots (63d) \\ &= 4.2538 (m^{-1}) & \dots (64a) \\ &= \sin(n, \beta, 1) \cdot \sinh(\mu, \beta, 1) & \dots (64a) \\ &= \sin(n, 0.0119 \times 4, 2538 \times 168, 4) \times \sinh(0.0119 \times 4, 2538 \times 168, 4) \\ &= \sin(n, 600 \times 198 \times 168, 5076) = 1965, 7505 \\ e_{-2} &= \sin(n, \beta, 1) \cdot \cosh(\mu, \beta, 1) & \dots (64c) \\ &= \cos(n, 6076) \times \sinh(n, 5076) = -1505, 4732 \\ e_{-4} &= \cos(n, \beta, 1) \cdot \sinh(n, \beta, 1) & \dots (64c) \\ &= \cos(n, 8, 5076) \times \cosh(n, 8, 5076) = -1505, 4733 \\ C_{-1} &= \sin(n, 0, 2138 \times 4, 2538 \times 168, 4) \times \sinh(0, 0238 \times 4, 2538 \times 168, 4) \\ &= \sin(0, 0238 \times 4, 2538 \times 168, 4) \times \sinh(0, 0238 \times 4, 2538 \times 168, 4) \\ &= \sin(17, 0151) \times \sinh(17, 0151) = -11837539, 5359 \\ C_{-3} &= \cos(n, \beta, 1) \cdot \cosh(n, \beta, 1) \\ &= \sin(n, 17, 0151) \times \cosh(n, 7, 0151) = -3195451, 5627 \\ C_{+} &= \cos(n, 7, 0151) \times \sinh(17, 0151) = -3195451, 5627 \\ f_{-1} &= \frac{1}{\Delta} \cdot \left[C_{-1} (C_{-1}) - C_{-3} (C_{-3} + C_{-1}) - C_{-1} \cos(2\pi n, 1) \right] \cdot \frac{2\pi}{\beta L} \\ &+ (C_{-3} + C_{-1}) \cdot \sin(2\pi n, 1] \\ &= -0, 0088 \end{aligned}$$

$$\begin{split} \mathbf{f}_{z} &= \frac{1}{\Delta} - \left[\mathbf{C}_{1} \cdot (\mathbf{C}_{3} - \mathbf{C}_{2}) - \mathbf{C}_{4} \cdot (\mathbf{C}_{3} + \mathbf{C}_{2}) + (\mathbf{C}_{3} + \mathbf{C}_{2}) \cdot \cos(2\pi \mathbf{v}) \right] \\ &+ \mathbf{C}_{1} \cdot \frac{2\pi}{\beta \mathbf{L}} \cdot \sin(2\pi \mathbf{v}) \right] \\ &+ (\mathbf{C}_{3} - \frac{2\pi}{\beta \mathbf{L}} - \sin(2\pi \mathbf{v}) \right] \\ &+ (-3195451, 5627 - 11837539, 5359 \times (-3195451, 5627 + 11837539, 5359) + 3195451, \\ &+ (-3195451, 5627 - 11837539, 5359) \times \cos(2\pi \times 0.0238) \right] \\ &= -1, 0000 \\ \mathbf{f}_{3} &= \frac{1}{\Delta} - \left[\left\{ \mathbf{C}_{1} \cdot (\mathbf{C}_{4} + \mathbf{C}_{4}) - \mathbf{C}_{2} \cdot (\mathbf{C}_{4} + \mathbf{C}_{2}) - \mathbf{C}_{4} \cdot \cos(2\pi \mathbf{v}) \right\} - \frac{2\pi}{\beta \mathbf{L}} \\ &+ (\mathbf{C}_{3} + \mathbf{C}_{2}) \cdot \sin(2\pi \mathbf{v}) \right] \\ &+ (\mathbf{C}_{3} + \mathbf{C}_{2}) \cdot \sin(2\pi \mathbf{v}) \right] \\ &= \frac{1}{150338252952556, 0} \times \left[\left\{ -11837539, 5359 \times (-3195451, 5627 - 11837539, 5359) + 118375 \\ &+ (1837539, 5359 \times \cos(2\pi \times 0.0238) \right\} \times \frac{2\pi}{4, 2538 \times 168, 4} \\ &+ (-3195451, 5627 - 11837539, 5359) \times \sin(2\pi \times 0.0238) \right] \\ &= 0, 0000 \\ \mathbf{f}_{4} &= \frac{1}{\Delta} - \left[\left(\mathbf{C}_{3} \cdot (\mathbf{C}_{4} + \mathbf{C}_{4}) - \mathbf{C}_{2} \cdot (\mathbf{C}_{4} - \mathbf{C}_{4}) + (\mathbf{C}_{2} - \mathbf{C}_{3}) \cdot \cos(2\pi \mathbf{v}) \right\} - \frac{2\pi}{\beta \mathbf{L}} \\ &- 2\mathbf{C} \cdot \sin(2\pi \mathbf{v}) \right] \\ &= 0, 0000 \\ \mathbf{f}_{4} &= \frac{1}{\Delta} - \left[\left(\mathbf{C}_{3} \cdot (\mathbf{C}_{4} + \mathbf{C}_{4}) - \mathbf{C}_{2} \cdot (\mathbf{C}_{4} - \mathbf{C}_{4}) + (\mathbf{C}_{2} - \mathbf{C}_{3}) \cdot \cos(2\pi \mathbf{v}) \right\} - \frac{2\pi}{\beta \mathbf{L}} \\ &+ (-11837539, 5359 \times \sin(2\pi \times 0.0238) \right] \\ &= 0, 0088 \\ \mathbf{f}_{5} &= \frac{1}{\Delta} - \left[\left(\mathbf{C}_{3} - \mathbf{C}_{2} \right)^{2} + \mathbf{C}_{4} \cdot \mathbf{C}_{4} - 2\mathbf{C}_{4} \cdot \cos(2\pi \mathbf{v}) \\ &- \left(\mathbf{C}_{2} - \mathbf{C}_{3} \right) - \frac{2\pi}{\beta \mathbf{L}} \cdot \sin(2\pi \mathbf{v}) \right] \\ &= 0.0088 \\ \mathbf{f}_{5} &= \frac{1}{\Delta} - \left[\left(\mathbf{C}_{3} - \mathbf{C}_{2} \right)^{2} + \mathbf{C}_{4} \cdot \mathbf{C}_{4} - 2\mathbf{C}_{4} \cdot \cos(2\pi \mathbf{v}) \\ &- \left(\mathbf{C}_{2} - \mathbf{C}_{3} \right) - \frac{2\pi}{\beta \mathbf{L}} \cdot \sin(2\pi \mathbf{v}) \right] \\ &= \frac{1}{1503382529525566, 0} \times \left[\left(-3195451, 5627 + 11837539, 5359 \right)^{2} + (-11837539, 5359 \times 3195451, 5627 + 2 \times 11837539, 5359 \times 2 (2\pi \times 0.0238) \right] \\ &= 0.0088 \\ \mathbf{f}_{5} &= \frac{1}{1503382529525566, 0} \times \left[\left(-3195451, 5627 + 2 \times 11837539, 5359 \right)^{2} + (1837539, 5359 \times 3195451, 5627 + 2 \times 11837539, 5359 \times 2 \times 0.0238) \right] \\ &= \frac{1}{1503382529525566, 0} \times \left[\left(-3195451, 5627 + 2 \times 11837539, 5359 \right)^{2} + (\mathbf{C}_{3} - \mathbf{C}_{3} - \mathbf{C}_{3}$$

管きょの可とう継手がある場合の応力補正係数

$$\xi_{-1} = \frac{\sqrt{\phi_{-1}^{-2} + \phi_{-2}^{-2}}}{\exp(\nu' \cdot \lambda_{-1} \cdot L') - \exp(-\nu' \cdot \lambda_{-1} \cdot L')}$$
$$= \frac{\sqrt{(1844.4749)^{-2} + (-97.4103)^{-2}}}{\exp(0.0168 \times 1.8919 \times 238.2) - \exp(-0.0168 \times 1.8919 \times 238.2)}$$
$$= 0.9546$$

$$\xi_{2} = \sqrt{\phi_{3}^{2} + \phi_{4}^{2}} = \sqrt{(-0.0745)^{2} + (493.6011)^{2}} = 493.6011$$

8.2.4 レベル1地震動

管きょ中心深度における最大変位振幅

$$U_{h}(z) = \frac{2}{\pi^{2}} \cdot S_{v} \cdot T_{s} \cdot \cos\left(\frac{\pi \cdot z}{2H}\right)$$
$$= \frac{2}{\pi^{2}} \times 0.2400 \times 0.882 \times \cos\left(\frac{\pi \times 1.308}{2 \times 24.700}\right) = 0.04275 \text{ (m)}$$

管きょの軸方向応力

$$\sigma_{\rm L} = \alpha_{\rm 1} \cdot \xi_{\rm 1} \cdot \frac{\pi \cdot U_{\rm h}(z)}{\rm L} \cdot {\rm E}$$

= 1.000×0.9546× $\frac{\pi \times 0.04275}{168.4}$ × 3.00×10⁶
= 2283.5 (kN/m²) = 2.28 (N/mm²)

管きょの曲げ方向応力

$$\sigma_{\rm B} = \alpha_{2} \cdot \xi_{2} \cdot \frac{2 \pi \cdot D \cdot U_{\rm h}(z)}{L^{2}} \cdot E$$

= 1.000×493.6011× $\frac{2 \pi \times 0.2160 \times 0.04275}{168.4^{2}}$ × 3.00×10⁶
= 3029.4 (kN/m²) = 3.03 (N/mm²)

軸方向力と曲げ方向応力の合成応力

$$\sigma_{X} = \sqrt{\gamma \cdot \sigma_{L}^{2} + \sigma_{B}^{2}} = \sqrt{3.12 \times 2.28^{2} + 3.03^{2}}$$

 $= 5.04 (N/mm^{2}) \leq \sigma_{a} = 10.80 (N/mm^{2})$ (0k)

8.2.5 レベル2地震動

管きょ中心深度における最大変位振幅

$$U_{\rm h}(z) = \frac{2}{\pi^{2}} \cdot S_{\rm v} \cdot T_{\rm s} \cdot \cos\left(\frac{\pi \cdot z}{2{\rm H}}\right)$$
$$= \frac{2}{\pi^{2}} \times 0.8000 \times 0.882 \times \cos\left(\frac{\pi \times 1.308}{2 \times 24.700}\right) = 0.14251 \quad ({\rm m})$$

管きょの軸方向応力

$$\sigma_{\rm L} = \alpha_{\rm 1} \cdot \xi_{\rm 1} \cdot \frac{\pi \cdot U_{\rm h}(z)}{\rm L} \cdot {\rm E}$$

= 1.000×0.9546× $\frac{\pi \times 0.14251}{168.4}$ × 3.00×10⁶
= 7611.8 (kN/m²) = 7.61 (N/mm²)

管きょの曲げ方向応力

$$\sigma_{\rm B} = \alpha_{2} \cdot \xi_{2} \cdot \frac{2 \pi \cdot \mathbf{D} \cdot \mathbf{U}_{\rm h}(\mathbf{z})}{\mathbf{L}^{2}} \cdot \mathbf{E}$$

= 1.000×493.6011× $\frac{2 \pi \times 0.2160 \times 0.14251}{168.4^{2}}$ ×3.00×10⁶
= 10098.0 (kN/m²) = 10.10 (N/mm²)

$$\sigma_{X} = \sqrt{\gamma \cdot \sigma_{L}^{2} + \sigma_{B}^{2}} = \sqrt{3.12 \times 7.61^{2} + 10.10^{2}}$$

= 16.81 (N/mm²) $\leq \sigma_{a} = 47.00$ (N/mm²)(0k)

計算結果一覧

目 次

1	レベル1	地震動時の検討	2
	1.1	液状化に対する検討	2
	1.2	マンホールと管きょの接合部の検討	2
	1.3	管きょと管きょの接合部の検討	2
	1.4	管きょの管軸方向の検討	3
2	レベル2	地震動時の検討	4
	2.1	液状化に対する検討	4
	2.2	マンホールと管きょの接合部の検討	4
	2.3	管きょと管きょの接合部の検討	4
	2.4	管きょの管軸方向の検討	5

1 レベル1地震動時の検討

1.1 液状化に対する検討

	層厚 (m)	土質	N値	FL	判 定
1	0.500	砂質土	2.0	1.112	非液状化層
2	2.800	砂質土	5.0	1.503	非液状化層
3	1.900	粘性土	3.0		非液状化層
4	3.300	砂質土	10.0	1.501	非液状化層
5	12. 200	粘性土	2.0		非液状化層
6	4.000	砂質土	12.0	1. 236	非液状化層

1.2 マンホールと管きょの接合部の検討

	屈曲角・抜出量		許容値	判定
地震動による屈曲角	0.01(度)	VII	2.00(度)	Ok
地震動による抜出量	3.19 (mm)	VII	27.00 (mm)	Ok

1.3 管きょと管きょの接合部の検討

	屈曲角・抜出量		許容値	判定
地震動による屈曲角	0.03(度)	ll/	2.00(度)	Ok
地震動による抜出量	3.19 (mm)	VII	27.00 (mm)	Ok
地盤の傾斜に伴う 永久ひずみによる抜出し量	52.00 (mm)	>	27.00 (mm)	NG
地盤の硬軟急変化部通過の 影響による抜出し量	20.00 (mm)	VII	27.00 (mm)	0k
浅層不整形地盤の 影響による抜出し量	12.42 (mm)		27.00 (mm)	0k

1.4 管きょの管軸方向の検討

	応力度		許容値	判定
管きょの管軸方向の応力度	5.04 (N/mm ²)	VII	10.80 (N/mm ²)	Ok

2 レベル2地震動時の検討

2.1 液状化に対する検討

	層厚 (m)	土質	N値	FL	判 定
1	0.500	砂質土	2.0	0.339	液状化層
2	2.800	砂質土	5.0	0.523	液状化層
3	1.900	粘性土	3.0		非液状化層
4	3.300	砂質土	10.0	0.592	液状化層
5	12. 200	粘性土	2.0		非液状化層
6	4.000	砂質土	12.0	0. 460	液状化層

2.2 マンホールと管きょの接合部の検討

	屈曲角・抜出量		許容値	判定
地震動による屈曲角	0.05(度)	VII	5.00(度)	Ok
地震動による抜出量	10.63 (mm)	VII	54.00 (mm)	Ok
地盤の液状化に伴う 永久ひずみによる抜出し量	48.00 (mm)	VII	54.00 (mm)	Ok
地盤の傾斜に伴う 永久ひずみによる抜出し量	52.00 (mm)	VII	54.00 (mm)	Ok
地盤の硬軟急変化部通過の 影響による抜出し量	20.00 (mm)	\leq	54.00 (mm)	Ok

2.3 管きょと管きょの接合部の検討

	屈曲角・抜出量		許容値	判定
地震動による屈曲角	0.08(度)	VII	5.00(度)	Ok
地震動による抜出量	10.63 (mm)	VII	54.00 (mm)	Ok
地盤の液状化に伴う 永久ひずみによる抜出し量	48.00 (mm)	VII	54.00 (mm)	Ok
地盤の液状化に伴う 地盤の沈下による屈曲角	5.66(度)	>	5.00(度)	NG
地盤の液状化に伴う 地盤の沈下による抜出し量	79.25 (mm)	>	54.00 (mm)	NG

2.4 管きょの管軸方向の検討

	応力度		許容値	判定
管きょの管軸方向の応力度	16.81 (N/mm ²)	VII	47.00 (N/mm ²)	Ok